University Bremerhaven

Prof. Dr.-Ing. Kai Mueller

Kodhschule**\Bremerhave**

	S	ample '	Test E	T-DTV	S14-ST	
Time 120 minutes – use of class documents allowed –						
Name:					Percent:	
Matr. No.: Grade:						
1	2	3	4			Σ

(1) Boolean Logic

(1.1) DeMorgan Theorem

The boolean equation $y = x_1 \cdot x_2' \cdot x_3' \cdot x_4$ should be converted to OR/NOR logic by applying the DeMorgan theorem. Draw the complete circuit diagram with OR/NOR gates.

(1.2) Duality Theorem

Apply the Duality theorem to $(x + 0) \cdot (x + 1) = x$ (assume it is correct). Prove the equation after applying the Duality theorem.

(1.3) Logic Minimization

Find the minimum product of sums solution for the following truth table

a	b	С	y
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0.

Draw the complete circuit diagram using only NOR gates!

(1.4) Hazards

The combinational circuit $y = x_2 \cdot x_1' + x_3' \cdot x_1 \cdot x_0$ might produce erroneous output (hazard). Draw the circuit with inverters, AND and OR gates. Draw a timing diagram for the change from $x_3 = 0$, $x_2 = 1$, $x_1 = 1$, $x_0 = 1$ to $x_3 = 0$, $x_2 = 1$, $x_1 = 1$, $x_0 = 1$ to $x_3 = 0$, $x_2 = 1$, $x_1 = 0$, $x_2 = 1$, $x_2 = 1$, $x_1 = 0$, $x_2 = 1$, $x_1 = 0$, $x_2 = 1$, $x_2 = 1$, $x_1 = 0$, $x_2 = 1$, $x_2 = 1$, $x_2 = 1$, $x_1 = 0$, $x_2 = 1$, $x_2 = 1$, $x_2 = 1$, $x_1 = 0$, $x_2 = 1$, $x_2 = 1$, $x_1 = 0$, $x_2 = 1$, $x_1 = 0$, $x_2 = 1$, $x_2 = 1$, $x_1 = 0$, $x_2 = 1$, $x_2 = 1$, $x_2 = 1$, $x_1 = 0$, $x_2 = 1$, $x_2 = 1$, $x_1 = 0$, $x_2 = 1$, $x_2 = 1$, $x_1 = 1$, $x_2 = 1$, $x_2 = 1$, $x_1 = 1$, $x_2 = 1$, $x_2 = 1$, $x_1 = 1$, $x_2 = 1$, $x_2 = 1$, $x_2 = 1$, $x_1 = 1$, $x_2 = 1$, $x_2 = 1$, $x_2 = 1$, $x_1 = 1$, $x_2 = 1$, $x_2 = 1$, $x_2 = 1$, $x_2 = 1$, $x_1 = 1$, $x_2 = 1$, $x_2 = 1$, $x_2 = 1$, $x_2 = 1$, $x_3 = 1$, $x_4 = 1$

Change the design so that it becomes Hazard-free.

(2) Hardware State Machine (Moore Machine)

The following signals should be generated by a state machine with every clock cycle. Inputs of the state machine:

reset '1' => reset of the state machine, '0' operation of sm, *start* '1' => generate sequence below, '0' => $y_0 = y_1 = '0'$.

- (2.1) How many states are required; how many flip-flops are required?
- (2.2) Draw the state diagram.
- (2.3) Design minimal solutions for the next-state logic.
- (2.4) Design minimal solution for the output logic.
- (2.5) Draw the flip-flops and output logic hardware circuit.

(3) Coupled Flip-Flops

The following circuit should be synthesized by VHDL.

- (3.1) Synthesize the circuit as *structural design* in VHDL. All gates and flip-flops should be seen in the VHDL code.
- (3.2) What could be the purpose of this digital system?
- (3.3) Design the same function in a behavioral way (using a standard_logic_vector for all flip-flops).

(4) AC Machine Power Transistor Signals

Controlled AC drives (induction or synchronous machines) require a power inverter.

The principle of operation is shown in the above figure where pairs of power transistors are represented by switches that can be in a '0' and a '1' position. The switch position can be seen as a boolean signal.

The inverter is in "off"-state for $S_3 = S_2 = S_1 = 0$.

Positive rotation of the machine occurs for the sequence:

<u>S3</u>	S2	S1
0	0	1
0	1	1
0	1	0
1	1	0
1	0	0
1	0	1
0	0	1
0	1	1
0	1	0
	•••	
	•••	

Inputs:

reset	'1' = > resets the state machine
start_stop	'1' => normal (rotation) operation, $'0' =>$ "off"-state.
rl_time	=> determines machine frequency. This input
	signal is 10 bits and it determines the number of clk cycles
	from one switch position to the next.

- (4.1) Design a state diagram (should be consistent with your VHDL code) containing states, inputs and outputs.
- (4.2) Write a VHDL module that creates the sequence of output signals as a timed state machine. Use the reset and the start_stop and the rl_time signals.
- (4.3) What needs to be changed to reverse the sequence of the switches S_3 , S_2 , and S_1 ?