Sample Test PS-DIGS W14/15-1

Time 90 minutes

- use of class documents allowed -

Name:

Matr. No.: \qquad

Percent:

Grade:
\qquad

| 1 | 2 | 3 | 4 | Σ |
| :--- | :--- | :--- | :--- | :--- | :--- |

(1) Conversion of Number Systems and Dual Number Computation

Computation with signed dual number should be carried out. The word size should be 16 bits. The number $x=348_{10}$ is given as a decimal number.
(1.1) What is the minimal (negative) number with 16 bits? Whta is the maximum positive number?
Hint: signed number have a 2's complement representation.
Your results should be given as decimal numbers.
(1.2) Convert the number x into the dual system by sequential division and remainders
(1.3) Wht is the binary number of $-x$ (2's complement, 16 bits!)?
(1.4) Provide the hexadecimal numbers of x und $-x$?

(2) Combinational Logic (Minimization)

The following truth table should be synthesized as combinational gate logic.

x 3	x 2	x 1	x 0	y 1	y 0
0	0	0	0	1	0
0	0	0	1	1	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	1	0
0	1	0	1	1	0
0	1	1	0	0	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	0	1	1	0
1	0	1	0	0	1
1	0	1	1	1	0
1	1	0	0	1	1
1	1	0	1	1	0
1	1	1	0	1	1
1	1	1	1	1	0

(2.1) Find a minimal solution for the dunction $y_{0}=F_{0}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ as product of sums. Draw the circuit with inverters, AND and OR gates.
(2.2) Find a minimal solution for the dunction $y_{1}=F_{1}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ as sum of products.
Draw the circuit with inverters, AND and OR gates.

(3) Hardware State Machine (Moore Machine)

A hardware state machine should be designed to flash an LED several times after a button has beed activated. It should stop after 6 clock cycles. All activities are aligned with the rising edge of the clock signal.

Input of the state machine:
$b \quad '^{\prime}=>$ generate sequences below, ' 0 ' $=>$ off.
Output of the state machine:
led $\quad{ }^{\prime} 1 '=>$ on, ${ }^{\prime} 0 '=>$ off
(3.1) Draw the state diagram.
(3.2) How many states are required; how many flip-flops are required?
(3.3) Design the minimal solution only for $x_{0 \mathrm{n}}$ for the next-state logic (including circuit schematics).
(3.4) Design minimal solution for the output logic.
(3.5) Draw the flip-flops and output logic hardware circuit.

(4) PicoBlaze Program "Moving Lights"

--- lab (moving light) must be attached to the exam solutions ---

Hints: Your program must contain name and matriculation number The programm should contain comments.

