
INSTITUTE FOR
AUTOMATION

AND ELECTR. ENG.

University Bremerhaven

Prof. Dr.-Ing. Kai Mueller

Digital Systems / VHDL

(1) = 6 (2) = 6 (3) = 6 (4) = 6 (5) = 6 Σ = 30

1.0≥29 1.3≥27 1.7≥26 2.0≥24 2.3≥23 2.7≥21 3.0≥20 3.3≥18 3.7≥17 4.0≥15

Time 120 minutes
--- class documents allowed ---

Sample Test System-on--Chip Design ST-1

Solutions

(1) General SoC Questions

(1.1) --- answers can be found in the class/lab documentation.

(2) SoC Block Diagram for an Industrial Control System

(2.1) Block diagram of SoC components (user logic and processing system):

Solutions Sample Test “SY-SOC” ST-1 Seite 2

(3) DSP

F = [4.231 ---7.323 14.2 9.43] .

For the coefficients 14 bits are available; data is stored in 10 bit words.

(3.1) Absolute maximum value in F is |F(3)| = 14.2 . This magnitude requires (as a

signed integer ceil(ld(14.2))+1 = 5 bits. Thus we have 9 bits for the fractional

bits resulting in int14.9 format.

Range: --- 214---1 2---9 ... (214---1 --- 1) 2---9 => ---16 ... +15.998

(3.2) Decimal weights

b0b13

---2+4

=---16

b12

� � �
+2+3

=+8

b9

+2+0

=+1

b8

+2---1

=+½
� � �

+2---9

=0.002

(3.3) Block diagram for the product u = F x:

x(1) x(2) x(3) x(4)

F(1) F(2) F(3) F(4)

int_10.9

int_14.9

int_24.18

(any number of
fractional bits
is OK)

int_25.18 int_26.18 int_27.18

(minimum required bits for overflow avoidance)

(4) SoC Hardware

PI Controller with p_gain = 0.8 and i_gain = 0.15 (word size of 16 bits).

Solutions Sample Test “SY-SOC” ST-1 Seite 3

(4.1) p_gain and i_gain in int16.14 format:

p_gain = round(0.8 214) = 13107

i_gain = round(0.15 214) = 2458

(4.2) Analyze the hardware system:

--- MicroBlaze CPU (1 CPU),

--- the MicroBlaze requires reset controller (proc_sys_reset_0) and a clock

generator (clock_generator_0). Not attached on any bus, directly

connected to MicroBlaze,

--- four bus systems (AXI-full, AXI-lite, Data Local Memory Bus, Instruction,

Local Memory Bus). All busses are driven by MicroBlaze as master,

--- RAM controller for Block Memory (microblaze_0_d_bram_ctl and

microblaze_0_i_bram_ctl) and Block memory itself

(microblaze_0_bram_block),

--- DDR2 memory controller for external memory (MCB_DDR2) attached to

AXI-full,

--- Rest of modules are attached to AXI-lite:

--- Debug module (debug_module) for downloading and SW

debug,

--- Timer (axi_timer_0),

--- Interrupt controller for timer interrupts

(microblaze_0_intc),

--- UART (RS232_Uart_1),

--- PI controller in hardware [as user IP] => (pictrl_0).

(4.3) userlogic.vhd for PI controller hardware (wizard generated code not

shown/not required, only ARCHITECTURE section):

--USER signal declarations added here, as needed for user

logic
CONSTANT PI_IN_SIZE : integer := 16;

SUBTYPE SHORT_INT is integer RANGE -32768 to 32767;

CONSTANT P_GAIN : SHORT_INT := 13107;

CONSTANT I_GAIN : SHORT_INT := 2458;

TYPE state_type is (pi_idle, pi_muladd, pi_integ);
signal state, next_state : state_type;

signal Xint : integer := 0;

signal pi_out : integer;

Solutions Sample Test “SY-SOC” ST-1 Seite 4

--USER logic implementation added here

pihardw : PROCESS(Bus2IP_Clk, slv_reg_write_sel, Xint,
Bus2IP_Resetn, state) IS

BEGIN

if Bus2IP_Clk’event and Bus2IP_Clk = ’1’ then

if Bus2IP_Resetn = ’0’ then

Xint <= 0;
state <= pi_idle;

else

CASE state IS

WHEN pi_idle =>
IF slv_reg_write_sel = ”10” THEN

state <= pi_muladd;

END IF;

WHEN pi_muladd =>

pi_out <= P_GAIN *
conv_integer(signed(slv_reg0(PI_IN_SIZE-1 downto 0))) + Xint;

state <= pi_integ;

WHEN pi_integ =>

Xint <= I_GAIN *

conv_integer(signed(slv_reg0(PI_IN_SIZE-1 downto 0))) + Xint;
state <= pi_idle;

END CASE;

end if;

end if;

END PROCESS pihardw;

-- implement slave model software accessible register(s)

read mux

SLAVE_REG_READ_PROC : process(slv_reg_read_sel, slv_reg0,
slv_reg1, slv_reg2, slv_reg3,pi_out, Xint) is

begin

case slv_reg_read_sel is

when ”10” => slv_ip2bus_data <=

conv_std_logic_vector(pi_out, 32);
when ”01” => slv_ip2bus_data <=

conv_std_logic_vector(Xint, 32);

when others => slv_ip2bus_data <= (others => ’0’);

end case;

end process SLAVE_REG_READ_PROC;

Solutions Sample Test “SY-SOC” ST-1 Seite 5

(4.4) Explain major elements for PI algorithm from synthesis report:

The algorithm required two multiplications and to adders

pi_out[k] = p_gain[k] u[k] + integ[k],

integ[k+ 1] = i_gain[k] u[k] + integ[k],

The synthesis reports verifies this. the 16x13-bit multiplier is for the product with

i_gain (requires only 13 bits as signed number) and the 16x15-bit multiplier is

for the product with p_gain.

Multiplier and adder are implemented as DSP48 blocks (DSP48A1s hardware

multiplier and adder) and not in discrete logic using LUTS and FFs (CLBs).

(5) SoC Software

(5.1) Driver for your PI controller hardware from (4):

#include <stdio.h>

#include ”platform.h”

#include ”xuartlite_l.h”

#include ”xil_types.h”
#include ”xparameters.h”

void print(char *str);

#define PIREG(k)

(*(volatile s32 *)(XPAR_PICTRL_0_BASEADDR + 4 * k))

Solutions Sample Test “SY-SOC” ST-1 Seite 6

int main()

{
unsigned char cmd;

init_platform();

print(”-- PI (Hardware) Test V0.0a ---\n”);

PIREG(0) = 1;
do {

cmd = UARTgetchar();

xil_printf(”[integr] = %d\n”, PIREG(1));

xil_printf(”[pi_out] = %d\n”, PIREG(0));
PIREG(0) = 1;

}

} while (cmd != ’x’);

PIREG(0) = 0;

print(”Thank you for using PI.\n”);
cleanup_platform();

return 0;

}

The output is the step response of a PI controller with data from (4.1). In every step

the integrator is increased by i_gain.

(5.2) Analyzing program code (most important sections only):

--- program code (.text) located at base address of DDR2 (0xA8000000)

--- all data section are also located in DDR2 memory

--- .rodata = read-only,

--- .bss, .data

--- dynamic memory region (.heap)

--- stack (.stack)

Since program code is only 0x013b8 in size (appr. 5 kBytes) it could be moved to

BRAM which will be much faster than DDR.

Same is true for all data sections up to 8 kBytes for data and program code. In this

case no more cache memory is required.

Changing the section for code and data is specified by the link script.

���

