
PSM Syntax

Any line can be given a label
that will eventually be a
associated with an address.
When a label is defined it
must be followed by a colon
‘:’ . A label is case sensitive

Each line of your PSM file should adhere to the following basic syntax. Don’t worry too much about getting everything perfect or tidy because the assembler
will look after things like additional spaces and is very tolerant of upper or lower case characters except where it really matters. If you get something wrong
the assembler will show you what it doesn’t like and provide advice to help you correct it.

Anything following a
semicolon ‘;’ will be treated
as a comment and otherwise
ignored by the assembler.

Hint - The assembler

Any of the KCPSM6
instructions or an
assembler directive.
Upper or lower case
accepted.

label: instruction operand1, operand2 ; comment

All instructions and
directives except
RETURN have at least
one operand and this
should be separated
from the instruction by

Instructions and directives
that require a second
operand should be
separated from the first
operand by a comma ‘,’
(any spaces are formatting).

© Copyright 2010-2011 Xilinx

CONSTANT name, kk / ADDRESS aaa / NAMEREG oldname, newname / STRING name$, “text” / TABLE name#, [kk,kk,kk,..] / INST hhhhh

Page 52

‘:’ . A label is case sensitive
and can be any number of
the standard characters ‘a’
to ‘z’ , ‘A’ to ‘Z’, ‘0’ to ‘9’’ and
‘_’ (underscore) but it should
not be a name that could be
confused with a hex value

A label can then be used
anywhere in the program to
define the target address for
a JUMP or CALL instruction
as well as with the ‘lower
and ‘upper attributes to
define constants for use in
other instructions.

ignores empty lines so use
an empty comment (just a
semicolon) to preserve a
blank line in the FMT and
LOG files.

Lines only containing
comments will be formatted
in-line with the instructions.
Comments on lines
containing an instruction will
be formatted in a column to
the right of the longest
instruction. Looks nice ☺

from the instruction by
at least one space.

(any spaces are formatting).

Directives.....

Default register names for use as ‘sX’ or ‘sY’
‘s0’, ‘s1’, ‘s2’, ‘s3’, ‘s4’, ‘s5’, ‘s6’, ‘s7’, ‘s8’, ‘s9’, ‘sA’, ‘sB’, ‘sC’, ‘sD’, ‘sE’, ‘sF’.
The assembler will accept upper and lower case, e.g. ‘sb’, ‘SB’ and ‘Sb’ are also ‘sB’.

Constant values ‘aaa’, ‘kk’, ‘ss’, ‘p’ and ‘pp.
Each character represents the requirement for a hexadecimal digit to define an address,
constant or port. So for example ‘kk’ is any value in the range ‘00’ to ‘FF’ hex.
Hex values are the default and can be specified in upper or lower case, e.g, ‘6d’ or ‘6D’.
Decimal and binary values can be defined using ‘d and ‘b attributes

e.g. 109’d and 01101101’b are both the same value as ‘6D’.
Also for ‘kk’ constants only…

The ASCII equivalent of a character can be assigned, e.g. “n” is the same as ‘6D’
The lower 8-bits of an address can be identified using label’lower .
The upper 4-bits of an address can be identified using label’upper (msb 4-bits are zero).

PLEASE SEE – ‘all_kcpsm6_syntax.psm’ which provides a PSM file (albeit not a real program) that further describes all directives and has examples of all
the supported syntax. Since it is a valid PSM file you can assemble it to see the FMT and LOG files as well.

Registers and the NAMEREG Directive

KCPSM6 can generally access 16 general purpose registers assigned the default names ‘s0’ through to ‘sF’. There
are absolutely no restrictions on which register or combination of registers can be specified as ‘sX’ or ‘sY’ operands in
any of the instructions that work with registers. This provides you with complete freedom to allocate registers as you
wish. If you are careful with your allocation of registers to different tasks it will often avoid the requirement to ‘shuffle’
data around too much which is often the case when a processor has an accumulator based processor architecture.

The KCPSM6 assembler is able to identify the default name of a resister regardless of the mixture of upper and lower
case characters that you use to describe it but it will always convert it to the lower case ‘s’ followed by an upper case
hexadecimal digit when writing the FMT and LOG files. For example ‘S4’ will be interpreted as the default register
name ‘s4’. Likewise, ‘sd’, ‘Sd’ and ‘SD’ will all be interpreted as default register name ‘sD’. In other words, the
assembler allows you to concentrate on writing your code without having to be so precise about syntax and format.

NAMEREG Directive

sF

sE

sD

sC

sB

sA

16 Registers
All general purpose
All 8-bits

© Copyright 2010-2011 XilinxPage 53

ADD sB, 42
;
NAMEREG sB, Status
;
;
INPUT Status, flags_port
COMPARE Status, 12
;
NAMEREG Status, speed
;
SUB speed, 01
;
NAMEREG speed, sB
;
LOAD sB, 19

The NAMEREG directive is an optional facility that can help you keep track of what data you expect a particular
register to contain. Prior to the NAMEREG directive the resister will have the default name such as ‘sB’. Once renamed
only the new name will identify the register and that name is case sensitive exactly as you defined it. Changing the
name has no effect on the contents of the register or how it can be used.

sA

s9

s8

s7

s6

s5

s4

s3

s2

s1

s0

Default register name applies before the NAMEREG directive.

The new name can only contain ‘a’ to ‘z’, ‘A’ to ‘Z’ and ‘_’ underscore (no
spaces). It can be any length but must not be a name that could be confused
for anything else like a line label of a hexadecimal value.

Following the NAMEREG directive only the new is valid and this name is
case sensitive. In this case ‘sB’ will no longer be recognised.

The NAMEREG directive can be used to change the name again and then
only the new name is valid in the following code. Depending on your way of
thinking this is either useful or something to be avoided! ☺

The appropriate default register name can be restored and
following this all the normal case insensitivity rules also apply.

KCPSM6 Instruction Set

00xy0 LOAD sX, sY
01xkk LOAD sX, kk
16xy0 STAR sX, sY

28000 DISABLE INTERRUPT
28001 ENABLE INTERRUPT
29000 RETURNI DISABLE
29001 RETURNI ENABLE

14x06 SL0 sX
14x07 SL1 sX
14x04 SLX sX
14x00 SLA sX
14x02 RL sX
14x0E SR0 sX
14x0F SR1 sX
14x0A SRX sX
14x08 SRA sX
14x0C RR sX

Register loading

Logical

02xy0 AND sX, sY
03xkk AND sX, kk
04xy0 OR sX, sY
05xkk OR sX, kk
06xy0 XOR sX, sY
07xkk XOR sX, kk

Shift and Rotate Interrupt Handling

22aaa JUMP aaa
32aaa JUMP Z, aaa
36aaa JUMP NZ, aaa
3Aaaa JUMP C, aaa

Jump

aaa : 12-bit address 000 to FFF
kk : 8-bit constant 00 to FF
pp : 8-bit port ID 00 to FF

p : 4-bit port ID 0 to F
ss : 8-bit scratch pad location 00 to FF

x : Register within bank s0 to sF
y : Register within bank s0 to sF

Page Opcode Instruction

55
55
71

56
56
57
57
58
58

67
67
67
67
67
68
68
68
68
68

83
83
84
84

87
88
88
88
88

Page Opcode Instruction Page Opcode Instruction

© Copyright 2010-2011 XilinxPage 54

08xy0 INPUT sX, (sY)
09xpp INPUT sX, pp
2Cxy0 OUTPUT sX,(sY)
2Dxpp OUTPUT sX, pp
2Bkkp OUTPUTK kk, p

10xy0 ADD sX, sY
11xkk ADD sX, kk
12xy0 ADDCY sX, sY
13xkk ADDCY sX, kk
18xy0 SUB sX, sY
19xkk SUB sX, kk
1Axy0 SUBCY sX, sY
1Bxkk SUBCY sX, kk

07xkk XOR sX, kk

Arithmetic

Test and Compare

0Cxy0 TEST sX, sY
0Dxkk TEST sX, kk
0Exy0 TESTCY sX, sY
0Fxkk TESTCY sX, kk
1Cxy0 COMPARE sX, sY
1Dxkk COMPARE sX, kk
1Exy0 COMPARECY sX, sY
1Fxkk COMPARECY sX, kk

Register Bank Selection

37000 REGBANK A
37001 REGBANK B

3Eaaa JUMP NC, aaa
26xy0 JUMP@ (sX, sY)

Input and Output

2Exy0 STORE sX,(sY)
2Fxss STORE sX, ss
0Axy0 FETCH sX, (sY)
0Bxss FETCH sX, ss

Scratch Pad Memory

Subroutines

20aaa CALL aaa
30aaa CALL Z, aaa
34aaa CALL NZ, aaa
38aaa CALL C, aaa
3Caaa CALL NC, aaa
24xy0 CALL@ (sX, sY)
25000 RETURN
31000 RETURN Z
35000 RETURN NZ
39000 RETURN C
3D000 RETURN NC
21xkk LOAD&RETURN sX, kk

14x80 HWBUILD sX

Version Control

(64, 128 or 256 bytes)

58

59
59
60
60
61
61
62
62

63
63
64
64
65
65
66
66

92
93
93
93
93
94
96
97
97
97
97
98

70
70

73
73
74
74
78

81
81
82
82

88
89

100

